I took a look at the RDNA white paper and I pretty much like the architecture.

One SIMD unit has 32 cores, this would fit for a piece-wise move generator, it clocks up to 2.5 GHz, and the cache hierarchy of RDNA2 seems to fit NNUE networks with 10 million weights with 20 MB.

I am yet not sure if the caches are for textures only or if they can be used for program data, and the latencies are according to some benchmarks about an order of magnitude higher than on CPUs, hence it remains open how the NNUE inference will perform.

The scratch-pad memory (LDS) shared across one work-group is 32KB, this is enough for me to store the iterative search var stacks, constant cache of 16KB for the lookup-tables, the L0 cache is 16KB, L1 128KB, L2 4MB, and L3 varies from 16 to 128 MB. If I use a short2 data-type for the first NNUE layer and char4 for the further this should fit across the L0 to L3 caches. Alternative is to store the INT8 weights in the vector registers file, 128KB per SIMD.

Still not sure if 8-bit vector packed math is supported via OpenCL, to speed up NN inference.